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Abstract

We study the problem of strongly refuting semirandom instances of 𝑘-sparse inhomogeneous
linear equations over a finite field 𝔽. For the case of 𝔽 = 𝔽2, this is the problem of refuting
semirandom instances of 𝑘-XOR. The work of [GKM22] and the follow-up [HKM23] give an
𝑛𝑂(ℓ )-time algorithm to certify that there is no assignment that can satisfy more than 1

|𝔽| + 𝜀-

fraction of constraints, provided that the 𝑘-XOR instance has Ω(𝑛) ·
(
𝑛
ℓ

) 𝑘/2−1 log 𝑛/𝜀4 constraints,
and the work of [KMOW17] provides good evidence that this tight up to a polylog(𝑛) factor via
lower bounds for the Sum-of-Squares hierarchy. However, for larger fields, there is a gap of
|𝔽|𝑂(𝑘) between the current best upper and lower bounds.

In this paper, we give an (|𝔽∗ |𝑛)𝑂(ℓ )-time algorithm to strongly refute semirandom 𝑘-LIN in-

stances over any finite field𝔽provided that the instance has at leastΩ(𝑛)·
(
|𝔽∗ |𝑛
ℓ

) 𝑘/2−1
log(𝑛 |𝔽∗ |)/𝜀4

constraints. We additionally give good evidence that this dependence on the field size |𝔽| is
optimal by proving a lower bound for the Sum-of-Squares hierarchy that matches this threshold
up to a polylog(𝑛 |𝔽∗ |) factor. Our key technical innovation is a generalization of the “𝔽2 Kikuchi
matrices” of [WAM19, GKM22] to larger fields.
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1 Introduction

A 𝑘-LIN instance over a finite field 𝔽 is a collection of 𝑘-sparse 𝔽-linear inhomogeneous equations
in 𝑛 variables. Namely, the instance consists of 𝑛 variables 𝑥1 , . . . , 𝑥𝑛 , as well as equations, where
each equation has the form

∑
𝑖∈𝐼 𝛼𝑖𝑥𝑖 = 𝑏𝐼 , where |𝐼 | = 𝑘 and 𝛼𝑖 ∈ 𝔽 \ {0}. In this paper, we study

the problem of strongly refuting instances of 𝑘-LIN over a finite field 𝔽. Namely, we study the
algorithmic task of certifying that all assignments for a given instance satisfy at most 1

|𝔽| + 𝜀-fraction
of the equations. While this problem is known to be NP-hard in the worst case, there has been a
long line of work on designing algorithms for this task in the average case. In the average case, the
first natural model to consider is the fully random model, studied in [CGL07, AOW15, RRS17], where
all equations are drawn independently and uniformly at random. More recently, there has been
much work [AGK21, GKM22, HKM23] on designing algorithms for 𝑘-LIN in the harder semirandom
model, where the “left-hand sides” of the equations are worst case, and only the “right-hand sides”
𝑏𝐼 are random.

The problem of refuting 𝑘-LIN has been studied extensively in the Boolean case where 𝔽 = 𝔽2,
where it is also called 𝑘-XOR. Building on many prior works [GL03, CGL07, AOW15, BM16, RRS17,
AGK21], the work of [GKM22] gives an 𝑛𝑂(ℓ )-time algorithm that, given a semirandom 𝑘-LIN
instance over 𝔽2, certifies that no assignment can satisfy more than 1

2 + 𝜀-fraction of the constraints,
provided that the instance has at least 𝑂(1) ·

(
𝑛
ℓ

) 𝑘
2 ℓ · polylog(𝑛)/𝜀5 constraints. A follow-up work

of [HKM23] improved the polylog(𝑛) factor in the above threshold to a single log 𝑛 factor and the
dependence on 𝜀 to 1/𝜀4. In this algorithm, the quantity ℓ is a parameter that allows one to trade-off
between the runtime of the algorithm and the number of constraints in the instance required for
refutation.

This trade-off between runtime and number of constraints is conjectured to be optimal up
to the polylog(𝑛) and 𝜀-factors, with evidence coming in the form of lower bounds in various
restricted computational models [Fei02, BGMT12, OW14, MW16, BCK15, KMOW17]. For the sum-
of-squares hierarchy, the work of [KMOW17] shows that the canonical degree �̃�(ℓ ) sum-of-squares
algorithm is unable to refute a random (and thus also semirandom) 𝑘-LIN instance over 𝔽2 with
at most 𝑂(1) ·

(
𝑛
ℓ

) 𝑘
2 ℓ/polylog(𝑛) constraints, a threshold that matches the algorithmic threshold

from [GKM22, HKM23] (and also [RRS17] for random 𝑘-LIN) up to a
(
log 𝑛

) 𝑘/2 factor. Moreover,
the sum-of-squares hierarchy is a powerful semidefinite programming hierarchy that captures
many prior algorithms — in particular, the lower bound of [KMOW17] applies to the algorithms
of [GL03, CGL07, AOW15, BM16, RRS17, AGK21, GKM22, HKM23] — and so the lower bound
of [KMOW17] can be seen as giving good evidence that this 𝑂(1) ·

(
𝑛
ℓ

) 𝑘
2 ℓ threshold is tight up to

polylog(𝑛) factors.
Thus, for the Boolean case of 𝔽 = 𝔽2, we have a near-complete understanding: if the number of

constraints in the semirandom 𝑘-LIN instance is at least 𝑂(1) ·
(
𝑛
ℓ

) 𝑘
2 ℓ ·polylog(𝑛), then the algorithm

of [GKM22, HKM23] can strongly refute the instance in 𝑛𝑂(ℓ ) time, and if the number of constraints
is smaller than 𝑂(1) ·

(
𝑛
ℓ

) 𝑘
2 ℓ/polylog(𝑛), the lower bound of [KMOW17] provides good evidence

that there is no algorithm to refute in 𝑛𝑂(ℓ ) time.
What can we say about this problem over finite fields 𝔽 ≠ 𝔽2? By simple reductions to the
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Boolean case (see Appendix B in [AOW15]), one can give an algorithm to refute if there are
|𝔽|𝑂(𝑘) ·

(
𝑛
ℓ

) 𝑘
2 ℓ ·polylog(𝑛) constraints, i.e., we now have an extra factor of |𝔽|𝑂(𝑘). For lower bounds,

the work [KMOW17] also proves a lower bound of 𝑂(1) ·
(
𝑛
ℓ

) 𝑘
2 ℓ/polylog(𝑛) constraints for any finite

field 𝔽, which is the same as before. For constant-sized fields, this is the same behavior that we had
in the Boolean case. However, for larger 𝔽 of size, say |𝔽| = 𝑛𝜀, there is a poly(𝑛) gap between the
upper and lower bounds.

Understanding this dependence on the field size for refuting semirandom 𝑘-LIN instances has
applications to proving lower bounds for locally decodable/correctable codes and information-
theoretic private information retrieval schemes, which are essentially equivalent to locally decodable
codes over large alphabets. Recent work of [AGKM23] has led to a flurry of improvements in
lower bounds for binary locally decodable [AGKM23, BHKL24, JM24] and locally correctable
codes [KM24a, AG24, KM24b, Yan24] by establishing a connection between these lower bounds
and refuting “semirandom-like” instances of 𝑘-LIN over 𝔽2. Simple extensions of these results to
larger alphabets are known (see Appendix A in [AGKM23, KM24a]). However, the dependence on
the alphabet size is not good enough to yield any improvement yet in the known lower bounds for
𝑞-server PIR.

Our results. In this paper, we investigate the dependence on the field size in the number of
constraints required to refute semirandom 𝑘-LIN instances over a finite field 𝔽. As our main
results, we give both an algorithm and a matching sum-of-squares lower bound with the “correct”
dependence on the field size |𝔽|. Our algorithm is a generalization of [GKM22], and our lower
bound is a generalization of [Gri01, Sch08, KMOW17].

Before stating our main results, we formally define semirandom 𝑘-LIN instances.

Definition 1.1 ((Semirandom) 𝑘-LIN). An instance of 𝑘-LIN(𝔽) is ℐ = (ℋ , {𝑏𝑣}𝑣∈ℋ ), where ℋ is a
set of 𝑘-sparse vectors1 in 𝔽𝑛 and 𝑏𝑣 ∈ 𝔽 for all 𝑣 ∈ ℋ . We view ℐ as representing the system of
linear equations with variables 𝑥1 , . . . , 𝑥𝑛 specified by ⟨𝑣, 𝑥⟩ = 𝑏𝑣 for each 𝑣 ∈ ℋ . The value of the
instance, which we denote by val(ℐ), is the maximum over 𝑥 ∈ 𝔽𝑛 of the fraction of constraints
satisfied by 𝑥. That is, val(ℐ) = max𝑥∈𝔽𝑛

1
|ℋ |

∑
𝑣∈ℋ 1(⟨𝑥, 𝑣⟩ = 𝑏𝑣).

An instance of 𝑘-LIN is random if ℋ is a random subset of 𝑘-sparse vectors and each 𝑏𝑣 is drawn
independently and uniformly from 𝔽.

An instance of 𝑘-LIN is semirandom if each 𝑏𝑣 is drawn independently and uniformly from 𝔽 (but
ℋ may be arbitrary).

The first main result of this paper gives a refutation algorithm for semirandom 𝑘-LIN over any
field 𝔽.

Theorem 1.2 (Tight refutation of semirandom 𝑘-LIN(𝔽)). Fix ℓ ≥ 𝑘/2. There is an algorithm that takes
as input a 𝑘-LIN(𝔽) instance ℐ = (ℋ , {𝑏𝑣}𝑣∈ℋ in 𝑛 variables and outputs a number alg-val(ℐ) ∈ [0, 1] in
time (|𝔽|𝑛)𝑂(ℓ ) with the following two guarantees:

1. alg-val(ℐ) ≥ val(ℐ) for every instance ℐ;
1 A vector 𝑣 ∈ 𝔽𝑛 is 𝑘-sparse if |{𝑖 : 𝑣𝑖 ≠ 0}| = 𝑘.
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2. If |ℋ | ≥ Ω(𝑛) · log(|𝔽∗ |𝑛)
(
𝑛 |𝔽∗ |
ℓ

) 𝑘/2−1
· 𝜀−4 and ℐ is drawn from the semirandom distribution

described in Definition 1.1, then with probability ≥ 1 − 1
poly(𝑛) over the draw of the semirandom

instance, i.e., the randomness of {𝑏𝑣}𝑣∈ℋ , it holds that alg-val(ℐ) ≤ 1
|𝔽| + 𝜀.

As a byproduct of the analysis of Theorem 1.2, we also establish an extremal combinatorics
statement on the existence of short linear dependencies in any sufficiently dense collection of
𝑘-sparse vectors ℋ over a finite field 𝔽.

Theorem 1.3 (Short linear dependencies in 𝑘-sparse vectors over 𝔽). Let ℋ be a set of |ℋ | ≥
Ω(𝑛) · log(|𝔽∗ |𝑛)

(
𝑛 |𝔽∗ |
ℓ

) 𝑘/2−1
𝑘-sparse vectors in 𝔽𝑛 . Then, there exists a set 𝒱 ⊆ ℋ with |𝒱| ≤ ℓ log|𝔽∗ |𝑛

and nonzero coefficients {𝛼𝑣}𝑣∈𝒱 in 𝔽∗ such that:∑
𝑣∈𝒱

𝛼𝑣 · 𝑣 = 0 .

That is, 𝒱 is a linearly dependent subset of ℋ .

Theorem 1.3 is a generalization of the hypergraph Moore bound, or Feige’s conjecture on the
existence of short even covers in hypergraphs (first proven in [GKM22]) to arbitrary finite fields.
The hypergraph Moore bound establishes (see [NV08]) a rate vs. distance trade-off for binary LDPC
codes. One can similarly view Theorem 1.3 as establishing such a trade-off for LDPC codes over
larger fields.

The key technical innovation in our proofs of Theorems 1.2 and 1.3 is the introduction of a
new Kikuchi matrix for any finite field 𝔽 (Definition 3.2). Our Kikuchi matrices can be seen as
a generalization of the Kikuchi matrices of [WAM19, GKM22] specific to 𝔽2 to other fields and
Abelian groups.

In our second main result, we prove a sum-of-squares lower bound for refuting 𝑘-LIN instances
that nearly matches the threshold in Theorem 1.2.

Theorem 1.4 (Sum-of-squares lower bounds for refuting random 𝑘-LIN, informal). Fix 𝑛
max(|𝔽∗ |,𝑘) ≥

ℓ ≥ 𝑘. Let ℐ be a random 𝑘-LIN(𝔽) instance |ℋ | ≤ 𝑂(𝑛) ·
(
𝑛 |𝔽∗ |
ℓ

) 𝑘/2−1
· 𝜀−2. Then, with high probability

over the draw of ℐ, it holds that

1. val(ℐ) ≤ 1
|𝔽| + 𝜀.

2. The canonical degree-�̃�(ℓ ) sum-of-squares relaxation for 𝑘-LIN(𝔽) fails to refute ℐ.

Organization. This is a preliminary draft of the paper that contains a proof of Theorem 1.2 for
even 𝑘. The remaining proofs will be included in the full version.

2 Preliminaries

2.1 Basic notation

We let [𝑛] denote the set {1, . . . , 𝑛}. For two subsets 𝑆, 𝑇 ⊆ [𝑛], we let 𝑆 ⊕ 𝑇 denote the symmetric
difference of 𝑆 and 𝑇, i.e., 𝑆 ⊕ 𝑇 B {𝑖 : (𝑖 ∈ 𝑆 ∧ 𝑖 ∉ 𝑇) ∨ (𝑖 ∉ 𝑆 ∧ 𝑖 ∈ 𝑇)}. For a natural number 𝑡 ∈ ℕ,
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we let
([𝑛]
𝑡

)
be the collection of subsets of [𝑛] of size exactly 𝑡.

For a rectangular matrix 𝐴 ∈ ℂ𝑚×𝑛 , we let ∥𝐴∥2 B max𝑥∈ℂ𝑚 ,𝑦∈ℂ𝑛 :∥𝑥∥2=∥𝑦∥2=1 𝑥
†𝐴𝑦 denote the

spectral norm of 𝐴.
For a vector 𝑣 ∈ 𝔽𝑛 , we let supp(𝑣) B {𝑖 : 𝑣𝑖 ≠ 0} and wt(𝑣) B |supp(𝑣)|. For a field 𝔽 with

char(𝔽) = 𝑝, we let Tr(·) denote the trace map of 𝔽 over 𝔽𝑝 .
For a matrix 𝐴 ∈ ℂ𝑛×𝑛 , we let tr(𝐴) be the trace of 𝐴, i.e.,

∑𝑛
𝑖=1 𝐴𝑖 ,𝑖 . This should not be confused

with the trace map for field elements, which we denote by Tr(·). For two vectors 𝑥, 𝑦 ∈ ℂ𝑛 we define
the following inner product:

⟨𝑥, 𝑦⟩ = 𝑥†𝑦 =

𝑛∑
𝑖=1

𝑥𝑖 · 𝑦𝑖 .

2.2 Fourier Analysis

Let 𝐺 be an Abelian group isomorphic to ℤ𝑚1 × ... ×ℤ𝑚𝑟 via the isomorphism 𝜓. For 𝑚 ∈ ℕ, we let
𝜔𝑚 := 𝑒

2𝜋𝑖
𝑚 . For 𝛼, 𝑥 ∈ 𝐺, we define

𝜒𝛼(𝑥) =
𝑟∏

𝑖=1
𝜔

𝜓(𝛼)𝑖𝜓(𝑥)𝑖
𝑚𝑖

.

These functions form a Fourier basis for 𝐺, as shown in [O’D14]. This extends to a Fourier basis for
𝐺𝑛 as follows. For 𝑣, 𝑥 ∈ 𝐺𝑛 , we define

𝜒𝑣(𝑥) =
𝑛∏
𝑖=1

𝜒𝑣𝑖 (𝑥𝑖) .

For a function 𝑓 : 𝐺𝑛 → ℂ, we have that for each 𝑥 ∈ 𝐺𝑛 ,

𝑓 (𝑥) =
∑
𝑣∈𝐺𝑛

𝑓 (𝑣) · 𝜒𝑣(𝑥) ,

where 𝑓 (𝑣) = 𝔼𝑥∈𝐺𝑛

[
𝑓 (𝑥) · 𝜒𝑣(𝑥)

]
.

For the special case of functions 𝑓 : 𝔽𝑛 → ℂ with char(𝔽) = 𝑝, we note that the standard Fourier
basis is simply

𝜒𝑣(𝑥) = 𝜔Tr(⟨𝑣,𝑥⟩)
𝑝 .

2.3 Binomial coefficient inequalities

In this section, we state and prove the following fact about binomial coefficients that we will use.

Fact 2.1. Let 𝑛, ℓ , 𝑞 be positive integers with ℓ ≤ 𝑛. Let 𝑞 be constant and ℓ , 𝑛 be asymptotically large with
ℓ ≤ 𝑛/2. Then, ( 𝑛

ℓ−𝑞
)(𝑛

ℓ

) = Θ

((
ℓ

𝑛

) 𝑞)
,(𝑛−𝑞

ℓ

)(𝑛
ℓ

) = Θ(1) .

4



Proof. We have that ( 𝑛
ℓ−𝑞

)(𝑛
ℓ

) =

(ℓ
𝑞

)(𝑛−ℓ+𝑞
𝑞

) .
Using that

(
𝑎
𝑏

)𝑏 ≤
(𝑎
𝑏

)
≤

(
𝑒𝑎
𝑏

)𝑏 finishes the proof of the first equation.
We also have that(𝑛−𝑞

ℓ

)(𝑛
ℓ

) =
(𝑛 − 𝑞)!(𝑛 − ℓ )!
𝑛!(𝑛 − ℓ − 𝑞)! =

𝑞−1∏
𝑖=0

𝑛 − ℓ − 𝑖

𝑛 − 𝑖
=

𝑞−1∏
𝑖=0

(
1 − ℓ

𝑛 − 𝑖

)
,

and this is Θ(1) since ℓ ≤ 𝑛/2 and 𝑞 is constant. □

3 Proof of Theorem 1.2 for even 𝑘

In this section, we prove Theorem 1.2 in the case when 𝑘 is even. As in [GKM22, HKM23], the proof
is substantially simpler in the case of even 𝑘, so this section can also be viewed as a warmup to the
proof for odd 𝑘.

Our refutation algorithm for semirandom 𝑘-LIN follows the framework established in [GKM22,
HKM23]. The main technical tool we use is a generalization of the Kikuchi matrix of [WAM19] for
𝔽2 to arbitrary finite fields 𝔽.

As the first step in the proof, we make the following observation. Throughout fix char(𝔽) = 𝑝.

Observation 3.1. For a 𝑘-LIN(𝔽) instance ℐ = (ℋ , {𝑏𝑣}𝑣∈ℋ ), let val(ℐ , 𝑥) denote the fraction of
constraints satisfied by an assignment 𝑥 ∈ 𝔽𝑛 . Then, we have

val(ℐ , 𝑥) = 1
|𝔽| +

1
|ℋ ||𝔽|

∑
𝑣∈ℋ

∑
𝛽∈𝔽∗

𝜔
Tr(𝛽𝑏𝑣)
𝑝 · 𝜒𝛽𝑣(𝑥) =

1
|𝔽| +Φ(𝑥) ,

where
Φ(𝑥) = 1

|ℋ ||𝔽|
∑
𝑣∈ℋ

∑
𝛽∈𝔽∗

𝜔
Tr(𝛽𝑏𝑣)
𝑝 · 𝜒𝛽𝑣(𝑥) .

Proof. Recall that a constraint in ℐ takes the form ⟨𝑣, 𝑥⟩ = 𝑏𝑣 for 𝑣 ∈ ℋ , where 𝑥 ∈ 𝔽𝑛 are the
variables. The indicator variable for this event is simply:

1(⟨𝑣, 𝑥⟩ = 𝑏𝑣) = 𝔼𝛽∼𝔽
[
𝜔

Tr(𝛽𝑏𝑣−𝛽⟨𝑣,𝑥⟩)
𝑝

]
=

1
|𝔽|

∑
𝛽∈𝔽

𝜔
Tr(𝛽𝑏𝑣)
𝑝 · 𝜒𝛽𝑣(𝑥) .

where 𝑝 = char(𝔽). Indeed, if ⟨𝑣, 𝑥⟩ = 𝑏𝑣 , then Tr(𝛽𝑏𝑣 − 𝛽⟨𝑣, 𝑥⟩) = 0 for all 𝛽 ∈ 𝔽. If 𝑏𝑣 − ⟨𝑣, 𝑥⟩ ≠ 0,
i.e., it is some 𝛼 ∈ 𝔽∗, then 𝔼𝛽∈𝔽

[
𝜔

Tr(𝛽𝛼)
𝑝

]
= 𝔼𝛽∈𝔽

[
𝜔

Tr(𝛽)
𝑝

]
= 0. Hence, it follows that

val(ℐ , 𝑥) = 1
|ℋ |

∑
𝑣∈ℋ

1(⟨𝑣, 𝑥⟩ = 𝑏𝑣) =
1

|ℋ |
∑
𝑣∈ℋ

1
|𝔽|

∑
𝛽∈𝔽

𝜔
Tr(𝛽𝑏𝑣)
𝑝 · 𝜒𝛽𝑣(𝑥)
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=
1
|𝔽| +

1
|ℋ ||𝔽|

∑
𝑣∈ℋ

∑
𝛽∈𝔽∗

𝜔
Tr(𝛽𝑏𝑣)
𝑝 · 𝜒𝛽𝑣(𝑥) ,

which finishes the proof. □

In light of Observation 3.1, it thus remains to find a certificate that bounds max𝑥∈𝔽𝑛 Φ(𝑥).
Following [GKM22], we do this by constructing a Kikuchi matrix whose spectral norm provides a
certificate bounding the maximum value of Φ.

Definition 3.2. (Even-arity Kikuchi matrix over 𝔽). Let 𝑘/2 ≤ ℓ ≤ 𝑛/2 be a parameter,2 and let
𝑁 = |𝔽∗ |ℓ

(𝑛
ℓ

)
. For each 𝑘-sparse vector 𝑣 ∈ 𝔽𝑛 and 𝛽 ∈ 𝔽∗, we define a matrix 𝐴𝑣,𝛽 ∈ ℂ𝑁×𝑁 as follows.

First, we identify 𝑁 with the set of ℓ -sparse vectors in 𝔽𝑛 . Then, for ℓ -sparse vectors 𝑈,𝑉 ∈ 𝔽𝑛 , we
let

𝐴𝑣,𝛽(𝑈,𝑉) =
1 𝑈

𝑣, 𝛽
−−→ 𝑉

0 otherwise

where we say 𝑈
𝑣, 𝛽
−−→ 𝑉 if 𝑈 −𝑉 = 𝛽𝑣 and supp(𝑈) ⊕ supp(𝑉) = supp(𝑣).

Let Φ(𝑥) = 1
|𝔽| |ℋ |

∑
𝑣∈ℋ

∑
𝛽∈𝔽∗ 𝑐𝑣,𝛽 · 𝜒𝛽𝑣 be a polynomial defined by a set ℋ of 𝑘-sparse vectors

from𝔽𝑛 and complex coefficients
{
𝑐𝑣,𝛽

}
𝑣∈ℋ
𝛽∈𝔽∗

. We define the level-ℓ Kikuchi matrix for this polynomial

to be 𝐴 =
∑

𝑣∈ℋ
∑

𝛽∈𝔽∗ 𝑐𝑣,𝛽 · 𝐴𝑣,𝛽. We refer to the graph (with complex weights) defined by the
underlying adjacency matrix as the Kikuchi graph.

Remark 3.3. We note that in the above definition, we have 𝐴𝑣,𝛽 = 𝐴𝛽𝑣,1. The reason we use the
above definition with two parameters 𝑣 and 𝛽 is that it will be more convenient when counting
walks in the matrix 𝐴, as it makes explicit the choice of 𝑣 and 𝛽. Note that in ℋ , there could exist 𝑣
and 𝑣′ with 𝛽𝑣 = 𝑣′ for some 𝛽 ∈ 𝔽∗.

Observation 3.4. The Kikuchi matrix 𝐴 is always Hermitian.

Proof. To see this note that 𝑈 −𝑉 = 𝛽𝑣 ⇐⇒ 𝑉 −𝑈 = −𝛽𝑣, 𝜒𝛽 = 𝜒−𝛽, and ⊕ is commutative. □

The following observation shows that we can express Φ(𝑥) as a quadratic form on the matrix 𝐴

defined in Definition 3.2.

Observation 3.5. For 𝑥 ∈ 𝔽𝑛 define 𝑦 ∈ ℂ𝑁 as follows. For each ℓ -sparse 𝑈 ∈ 𝔽𝑛 , we set 𝑦𝑈 = 𝜒𝑈 (𝑥).
Then:

Φ(𝑥) = 1
|ℋ ||𝔽|Δ 𝑦†𝐴𝑦,

where Δ :=
( 𝑘
𝑘/2

) ( 𝑛−𝑘
ℓ−𝑘/2

)
|𝔽∗ |ℓ−𝑘/2.

Proof.

𝑦†𝐴𝑦 =
∑

𝑈,𝑉∈𝔽𝑛

wt(𝑈)=wt(𝑉)=ℓ

𝐴(𝑈,𝑉) · 𝜒𝑈 (𝑥) · 𝜒𝑉 (𝑥)

2 Note that it suffices to prove Theorem 1.2 for ℓ in this range
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=
∑

𝑈,𝑉∈𝔽𝑛

wt(𝑈)=wt(𝑈)=ℓ

1
(
𝑈

𝑣, 𝛽
−−→ 𝑉

)
· 𝑐𝑣,𝛽 · 𝜒𝑈 (𝑥) · 𝜒𝑉 (𝑥)

=
∑

𝑈,𝑉∈𝔽𝑛

wt(𝑈)=wt(𝑈)=ℓ

1
(
𝑈

𝑣, 𝛽
−−→ 𝑉

)
· 𝑐𝑣,𝛽 · 𝜒𝑈−𝑉 (𝑥)

=
∑

𝑈,𝑉∈𝔽𝑛

wt(𝑈)=wt(𝑈)=ℓ

1
(
𝑈

𝑣, 𝛽
−−→ 𝑉

)
· 𝑐𝑣,𝛽 · 𝜒𝛽𝑣(𝑥) .

For each 𝑣 ∈ ℋ and 𝛽 ∈ 𝔽∗, the term 𝑐𝑣,𝛽 · 𝜒𝛽𝑣(𝑥) appears once for each pair of vertices (𝑈,𝑉) with

𝑈
𝑣, 𝛽
−−→ 𝑉 . Let us now argue that the number of such pairs (𝑈,𝑉) is exactly Δ =

( 𝑘
𝑘/2

) ( 𝑛−𝑘
ℓ−𝑘/2

)
|𝔽∗ |ℓ−𝑘/2.

We will count the number of pairs (𝑈,𝑉) by first specifying supp(𝑈) and supp(𝑉), and then by
specifying 𝑈𝑖 for each 𝑖 ∈ supp(𝑈) (and same for 𝑉). We first require that supp(𝑈) ⊕ supp(𝑉) =
supp(𝑣), which in turn means that supp(𝑈) has intersection exactly 𝑘/2 with supp(𝑣) and likewise
for supp(𝑉). Thus, we can pay

( 𝑘
𝑘/2

)
to count the number of ways to split supp(𝑣) into two equal

parts. Second, we need to specify supp(𝑈) \ supp(𝑣), which is equal to supp(𝑉) \ supp(𝑣), which is( 𝑛−𝑘
ℓ−𝑘/2

)
choices. Finally, we need to specify 𝑈𝑖 for each 𝑖 ∈ supp(𝑈) and 𝑉𝑖 for each 𝑖 ∈ supp(𝑉). For

each 𝑖 ∈ supp(𝑈) ∩ supp(𝑣), we set 𝑈𝑖 = (𝛽𝑣)𝑖 , and for each 𝑖 ∈ supp(𝑈) \ supp(𝑣), we can set 𝑈𝑖 to
be any element in 𝔽∗. Note that specifying 𝑈 then determines 𝑉 , so we have |𝔽∗ |ℓ−𝑘/2 choices. This
finishes the proof. □

Next, we compute the average degree (or number of nonzero entries) in a row/column in 𝐴.

Observation 3.6. For 𝑈 ∈ 𝔽𝑛 with wt(𝑈) = ℓ we define the graph degree as normal:

deg(𝑈) := |{𝛽𝑣 | 𝛽 ∈ 𝔽∗ , 𝑣 ∈ ℋ s.t. ∃𝑉 ∈ 𝔽𝑛 ,wt(𝑉) = ℓ , 𝑈
𝑣,𝛽
−−→ 𝑉}|.

Then 𝔼[deg(𝑈)] ≥ |𝔽∗ |
2

(
ℓ

|𝔽∗ |𝑛

) 𝑘/2
· |ℋ |.

Proof. Each 𝑣 ∈ ℋ contributes |𝔽∗ |Δ to the total degree, so the average degree is 𝔼[deg(𝑆)] = |ℋ ||𝔽∗ |Δ
𝑁 .

We then have:

𝔼[deg(𝑆)] = |𝔽∗ |Δ
𝑁

· |ℋ | =
|𝔽∗ |ℓ−𝑘/2+1 ( 𝑘

𝑘/2
) ( 𝑛−𝑘

ℓ−𝑘/2
)

|𝔽∗ |ℓ
(𝑛
ℓ

) · |ℋ | ≥ |𝔽∗ |
2

(
ℓ

|𝔽∗ |𝑛

) 𝑘/2
· |ℋ | ,

where the last inequality follows from Fact 2.1. □

The following spectral norm bound immediately implies Theorem 1.2.

Lemma 3.7. Let 𝐴 be the level-ℓ Kikuchi matrix over 𝔽𝑛 defined in Definition 3.2 for the 𝑘-LIN instance
ℐ = (ℋ , {𝑏𝑣}𝑣∈ℋ ). Let Γ ∈ ℂ𝑁×𝑁 be the diagonal matrix Γ = 𝐷 + 𝑑𝕀 where 𝐷𝑈,𝑈 := deg(𝑈) and
𝑑 = 𝔼[deg(𝑈)]. Suppose that the 𝑏𝑣 ’s are drawn independently and uniformly from 𝔽, i.e., the instance ℐ is
semirandom (Definition 1.1). Then, with probability ≥ 1 − 1

poly(𝑛) , it holds that

∥Γ−1/2𝐴Γ−1/2∥2 ≤ 𝑂

(√
ℓ log|𝔽∗ |𝑛

𝑑

)
.
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We postpone the proof of Lemma 3.7 to the end of this section, and now finish the proof the
proof of Theorem 1.2.

Proof of Theorem 1.2 from Lemma 3.7. Letℐ = (ℋ , {𝑏𝑣}𝑣∈ℋ )be the input to the algorithm. Given ℓ , the
algorithm constructs the matrix 𝐴 and computes alg-val(ℐ) = 1

|𝔽| +
2|𝔽∗ |
|𝔽| ∥�̃�∥2, where �̃� = Γ−1/2𝐴Γ−1/2.

It remains to argue that this quantity has the desired properties.
Let Φ(𝑥) be the polynomial defined in Observation 3.1. For each 𝑥 ∈ 𝔽𝑛 , letting 𝑦 ∈ ℂ𝑛 be the

vector defined in Observation 3.5, we have

Φ(𝑥) = 1
|𝔽| |ℋ |Δ · 𝑦†𝐴𝑦 =

1
|𝔽| |ℋ |Δ · (Γ1/2𝑦)†�̃�(Γ1/2𝑦) ≤ 1

|𝔽| |ℋ |Δ · ∥�̃�∥2∥Γ1/2𝑦∥2
2

=
1

|𝔽| |ℋ |Δ · ∥�̃�∥2 · tr(Γ) = 2|𝔽∗ |
|𝔽| ∥�̃�∥2 ,

where we use that ∥Γ1/2𝑦∥2
2 = 𝑦†Γ𝑦 =

∑
𝑈 Γ𝑈 |𝑦𝑈 |2 =

∑
𝑈 Γ𝑈 = tr(Γ) since |𝑦𝑈 | = 1 for all 𝑈 , and that

tr(Γ) = 2|ℋ ||𝔽∗ |Δ. Hence,

val(ℐ) = 1
|𝔽| + max

𝑥∈𝔽𝑛
Φ(𝑥) ≤ 1

|𝔽| +
2|𝔽∗ |
|𝔽| ∥�̃�∥2 ,

which proves Item (1) in Theorem 1.2.
To prove Item (2), we observe that by Lemma 3.7, if ℐ is semirandom, then with high probability

over the draw of the 𝑏𝑣’s, it holds that

∥�̃�∥2 ≤ 𝑂

(√
ℓ log(|𝔽∗ |𝑛)

𝑑

)
.

From Observation 3.6, we have 𝑑 ≥ |𝔽∗ |
2

(
ℓ

|𝔽∗ |𝑛

) 𝑘/2
· |ℋ |. Hence, if |ℋ | ≥ 𝐶𝑛 log(|𝔽∗ |𝑛)

(
|𝔽∗ |𝑛
ℓ

) 𝑘/2−1
𝜀−2

for a sufficiently large constant 𝐶, then ∥�̃�∥2 ≤ 𝜀 with probability 1 − 1/poly(𝑛). This proves
Item (2). □

Proof of Lemma 3.7. By Observation 3.4, we have that ∥�̃�∥2 ≤ tr((Γ−1𝐴)2𝑡)1/2𝑡 for any positive integer
𝑡 (see Appendix A). Because the 𝑏𝑣’s are drawn independently from 𝔽, the matrix �̃� is a random
matrix. By Markov’s inequality,

Pr
[
tr((Γ−1𝐴)2𝑡) ≥ 𝑁 · 𝔼[tr((Γ−1𝐴)2𝑡)]

]
≤ 1

𝑁
.

We note this event is the same as tr((Γ−1𝐴)2𝑡)1/2𝑡 ≥ 𝑁1/2𝑡 · 𝔼[tr((Γ−1𝐴)2𝑡)]1/2𝑡 , and for 2𝑡 ≥ log 𝑁

we have 𝑁1/2𝑡 ≤ 𝑂(1). This immediately gives us that with probability ≥ 1 − 1
𝑁 , ∥�̃�∥2 ≤

𝑂
(
𝔼[tr((Γ−1𝐴)2𝑡)]1/2𝑡

)
. We then have that

𝔼[tr((Γ−1𝐴)2𝑡)] = 𝔼

tr
©«
©«Γ−1

∑
𝑣∈ℋ ,𝛽∈𝔽∗

𝑐𝑣,𝛽 · 𝐴𝑣,𝛽
ª®¬

2𝑡ª®®¬
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= 𝔼

tr ©«
∑

(𝑣1 ,𝛽1),...,(𝑣2𝑡 ,𝛽2𝑡 )∈ℋ×𝔽∗

2𝑡∏
𝑖=1

Γ−1 · 𝑐𝑣𝑖 ,𝛽𝑖 · 𝐴𝑣𝑖 ,𝛽𝑖
ª®¬


=
∑

(𝑣1 ,𝛽1),...,(𝑣2𝑡 ,𝛽2𝑡 )∈ℋ×𝔽∗

𝔼

[
tr

(
2𝑡∏
𝑖=1

Γ−1 · 𝑐𝑣𝑖 ,𝛽𝑖 · 𝐴𝑣𝑖 ,𝛽𝑖

)]
=

∑
(𝑣1 ,𝛽1),...,(𝑣2𝑡 ,𝛽2𝑡 )∈ℋ×𝔽∗

𝔼

[
2𝑡∏
𝑖=1

𝑐𝑣𝑖 ,𝛽𝑖

]
· tr

(
2𝑡∏
𝑖=1

Γ−1𝐴𝑣𝑖 ,𝛽𝑖

)
.

Let us now make the following observation. Let (𝑣1 , 𝛽1), ..., (𝑣2𝑡 , 𝛽2𝑡) ∈ ℋ × 𝔽∗ be a term in the
above sum. Fix 𝑣 ∈ ℋ , and let 𝑅(𝑣) denote the set of 𝑖 ∈ [2𝑡] such that 𝑣𝑖 = 𝑣. We observe that if for
some 𝑣 ∈ ℋ ,

∑
𝑖∈𝑅(𝑣) 𝛽𝑖 ≠ 0, then 𝔼

[∏2𝑡
𝑖=1 𝑐𝑣𝑖 ,𝛽𝑖

]
= 0. Indeed, this is because 𝑏𝑣 is independent for

each 𝑣 ∈ ℋ , and so 𝔼
[∏2𝑡

𝑖=1 𝑐𝑣𝑖 ,𝛽𝑖
]
=

∏
𝑣∈ℋ 𝔼

[∏
𝑖∈𝑅(𝑣) 𝑐𝑣,𝛽𝑖

]
, and

𝔼


∏
𝑖∈𝑅(𝑣)

𝑐𝑣,𝛽𝑖

 = 𝔼


∏
𝑖∈𝑅(𝑣)

𝜔
Tr(𝛽𝑖𝑏𝑣)
𝑝

 = 𝔼

[
𝜔

Tr((∑𝑖∈𝑅(𝑣) 𝛽𝑖)𝑏𝑣)
𝑝

]
.

Then, since 𝑏𝑣 is uniform from 𝔽, it follows that 𝔼

[
𝜔

Tr((∑𝑖∈𝑅(𝑣) 𝛽𝑖)𝑏𝑣)
𝑝

]
= 0 if

∑
𝑖∈𝑅(𝑣) 𝛽𝑖 ≠ 0, and

𝔼

[
𝜔

Tr((∑𝑖∈𝑅(𝑣) 𝛽𝑖)𝑏𝑣)
𝑝

]
= 1 if

∑
𝑖∈𝑅(𝑣) 𝛽𝑖 = 0. This motivates the following definition.

Definition 3.8 (Trivially closed sequence). Let (𝑣1 , 𝛽1), ..., (𝑣2𝑡 , 𝛽2𝑡) ∈ ℋ × 𝔽∗. We say that
(𝑣1 , 𝛽1), ..., (𝑣2𝑡 , 𝛽2𝑡) ∈ ℋ × 𝔽∗ is trivially closed with respect to 𝑣 if it holds that

∑
𝑖∈𝑅(𝑣) 𝛽𝑖 = 0. We

say that the sequence is trivially closed if it is trivially closed with respect to all 𝑣 ∈ ℋ .

With the above definition in hand, we have shown that

𝔼[tr((Γ−1𝐴)2𝑡)] =
∑

(𝑣1 ,𝛽1),...,(𝑣2𝑡 ,𝛽2𝑡 )
trivially closed

tr

(
2𝑡∏
𝑖=1

Γ−1𝐴𝑣𝑖 ,𝛽𝑖

)
.

The following lemma yields the desired bound on 𝔼[tr((Γ−1𝐴)2𝑡)].

Lemma 3.9.
∑

(𝑣1 ,𝛽1),...,(𝑣2𝑡 ,𝛽2𝑡 )
trivially closed

tr
(∏2𝑡

𝑖=1 Γ
−1𝐴𝑣𝑖 ,𝛽𝑖

)
≤ 𝑁 · 22𝑡 ·

( 2𝑡
𝑑

) 𝑡 .
With Lemma 3.9, we thus have the desired bound 𝔼[tr((Γ−1𝐴)2𝑡)]. Taking 𝑡 to be 𝑐 log2 𝑁 for a

sufficiently large constant 𝑐 and applying Markov’s inequality finishes the proof. □

Proof of Lemma 3.9. We bound the sum as follows. First, we observe that for a trivially closed
sequence (𝑣1 , 𝛽1), ..., (𝑣2𝑡 , 𝛽2𝑡), we have

tr

(
2𝑡∏
𝑖=1

Γ−1𝐴𝑣𝑖 ,𝛽𝑖

)
=

∑
𝑈0 ,𝑈1 ,...,𝑈2𝑡−1

2𝑡−1∏
𝑖=0

Γ−1
𝑈𝑖

· 1
(
𝑈𝑖

𝑣𝑖+1 , 𝛽𝑖+1−−−−−−→ 𝑈𝑖+1

)
,
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where we define 𝑈2𝑡 = 𝑈0. Thus, the sum that we wish to bound in Lemma 3.9 simply counts the
total weight of “trivially closed walks” 𝑈0 , 𝑣1 , 𝛽1 , 𝑈1 , . . . , 𝑈2𝑡−1 , 𝑣2𝑡 , 𝛽2𝑡 , 𝑈2𝑡 (where 𝑈2𝑡 = 𝑈0) in the
Kikuchi graph 𝐴, where the weight of a walk is simply

∏2𝑡−1
𝑖=0 Γ−1

𝑈𝑖
.

Let us now bound this total weight by uniquely encoding a walk𝑈0 , 𝑣1 , 𝛽1 , 𝑈1 , . . . , 𝑈2𝑡−1 , 𝑣2𝑡 , 𝛽2𝑡 , 𝑈2𝑡
as follows.

• First, we write down the start vertex 𝑈0.

• For 𝑖 = 1, . . . , 2𝑡, we let 𝑧𝑖 be 1 if 𝑣𝑖 = 𝑣 𝑗 for some 𝑗 < 𝑖. In this case, we say that the edge is
“old”. Otherwise 𝑧𝑖 = 0, and we say that the edge is “new”.

• For 𝑖 = 1, . . . , 2𝑡, if 𝑧𝑖 is 1 then we encode 𝑈𝑖 by writing down the smallest 𝑗 ∈ [2𝑡] such that
𝑣𝑖 = 𝑣 𝑗 . We note that we do not need to specify the element 𝛽𝑖 , as for any vertex 𝑈 , there is at

most one 𝑉 and one 𝛽 ∈ 𝔽∗ such that 1
(
𝑈

𝑣𝑖 , 𝛽−−−→ 𝑉

)
.

• For 𝑖 = 1, . . . , 2𝑡, if 𝑧𝑖 is 0 then we encode 𝑈𝑖 by writing down an integer in 1, . . . , deg(𝑈𝑖−1)
that specifies the edge we take to move to 𝑈𝑖 from 𝑈𝑖−1 (we associate [deg(𝑈𝑖−1)] to the edges
adjacent to 𝑈𝑖−1 with an arbitrary fixed map).

With the above encoding, we can now bound the total weight of all trivially closed walks as follows.
First, let us consider the total weight of walks for some fixed choice of 𝑧1 , . . . , 𝑧2𝑡 . We have 𝑁 choices
for the start vertex 𝑈0. For each 𝑖 = 1, . . . , 2𝑡 where 𝑧𝑖 = 0, we have deg(𝑈𝑖−1) choices for 𝑈𝑖 , and
we multiply by a weight of Γ−1

𝑈𝑖−1
≤ 1

deg(𝑈𝑖−1) . For each 𝑖 = 1, . . . , 2𝑡 where 𝑧𝑖 = 1, we have at most 2𝑡
choices for the index 𝑗 < 𝑖, and we multiply by a weight of Γ−1

𝑈𝑖−1
≤ 1

𝑑
. Hence, the total weight for a

specific 𝑧1 , . . . , 𝑧2𝑡 is at most 𝑁
( 2𝑡
𝑑

) 𝑟 , where 𝑟 is the number of 𝑧𝑖 such that 𝑧𝑖 = 1.
Finally, we observe that any trivially closed walk must have 𝑟 ≥ 𝑡. Hence, after summing over

all 𝑧1 , . . . , 𝑧2𝑡 , we have the final bound of 𝑁22𝑡 ( 2𝑡
𝑑

) 𝑡 , which finishes the proof. □
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A Complex trace moment method

Claim A.1. Let 𝐴 ∈ ℂ𝑛×𝑛 be Hermitian. Then ∥𝐴∥2 ≤ tr(𝐴2𝑡)1/2𝑡 .

Proof. Since 𝐴 is Hermitian we have 𝐴2 = 𝐴†𝐴. Suppose 𝑣 ∈ ℂ𝑛 is an eigenvector of 𝐴 with
eigencalue 𝜆 ∈ ℂ. Then 𝐴†𝐴𝑣 = 𝜆(𝐴†𝑣) = 𝜆𝜆 = |𝜆|2. It follows that the eigenvalues of 𝐴2𝑡 are
|𝜆1 |2𝑡 , ..., |𝜆𝑛 |2𝑡 . Let 𝜆 = argmax𝑖∈[𝑛] |𝜆𝑖 |. Since tr(𝐴2𝑡) = ∑𝑛

𝑖=1 |𝜆𝑖 |2𝑡 ≥ 𝜆2𝑡 and ∥𝐴∥2 = |𝜆| it follows
that ∥𝐴∥2 ≤ tr(𝐴2𝑡)1/2𝑡 .

Note since tr(𝐴2𝑡) ≤ 𝑛 |𝜆|2𝑡 it follows that tr(𝐴2𝑡)1/2𝑡 ≤ 𝑛1/2𝑡 · |𝜆|, which when 𝑡 = Ω(log 𝑛) is
nearly tight. □
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