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Abstract

The Stable Matching problem is a staple in classical complexity theory and has obvious
practical applications in Big Data settings. Despite this, the problem has only been explored
in a few capacities in streaming models and does not have a very complete characterization
in the literature. We explore different natural modelings of the problem and the hardness of
streaming in them. Specifically, we prove an Ω(n2 log n) lower bound on space complexity of
any (even randomized) streaming algorithm exactly solving the problem. We additionally look
at approaches for sublinear streaming algorithms for approximate stable matchings.



1 Introduction

In this paper we explore streaming the Stable Matching problem (often seen as the Stable Marriage,
Hospital/Residents [Man16], Students/University or Students/Jobs problems [BB04] [APR05]).
The problem, in its most canonical form is stated as being given two groups of equal size with strict
preferences of all the members of the other group and trying to find a stable matching between
the two. A matching here is a bijection between groups and stable is defined as no pairs in the
matching being unstable, which means that they are not matched with each other but would prefer
to be over their current matches.

The problem is of independent theoretical intereset due to its simplicity but is also practically
relevant in many Big Data settings from large healthcare systems matching residents to hospi-
tals to receive care to matching numerous applicants to jobs and interviews. In the 60s Gale and
Shapley proved not only do stable matchings always exist but they can always be found by an
extremely simple polynomial-time algorithm which has since become ubiquitous in undergraduate
CS curricula [GS62]. The problem also has many equivalent forms, such as having the groups be
non-bipartite (sometimes called the Stable Roommates problem) or having the preference lists be
partial or non-strict. For a succinct look into some of the classical results on the Stable Matching
problem and its variants we will refer the reader to [BCF08] [IM08]

Previous Work on Stable Matchings in the Streaming Setting. More recently, the problem
has received interest in streaming/online settings in Big Data.

• Early work explored a certain online version of the problem where one group’s preferences are
revealed at the start and the other group is revealed individual by indivdual. They showed
it is difficult to minimize unstable pairs in the worst case for deterministic and randomized
algorithms [KMV94].

• More recent work considers an evolving model where the preference lists change over time
(via swaps) but these updates are not given to the algorithm but rather must be queried. An
algorithm is given that maintains a matching with O(log2 n) unstable pairs [KLM16].

• Very recently a line of work in “reoptimization” was resolved for the Stable Matching problem.
In this setting an initial instance is given and solved, but then the instance is slightly modified
in a second stage and the goal is to output a new stable matching by changing the original
as little as possible. It was shown that there is an optimal online algorithm in the two-stage
setting and that none exists across more stages [BEY23].

• Another interesting model is the “dynamic” model which can be seen as a more natural
form of the evolving model above, where preference lists can be updated and the updates are
received directly by the algorithm. Stable matching in the dynamic model is more or less
trivialized by considering the instance as partial and resolving with new data. Some lines
of work have explored how to find “robust” matchings that are perturbed infrequently upon
updating [Dov21] [AI22] [AIS23].

The Semi-streaming Model and Maximum Matchings Despite the body of work done in
the various settings above, to the best of our knowledge there are no works directly addressing
the problem of finding approximate/true stable matchings while minimizing the space used by the
algorithm, which is a fundamental question asked in many streaming settings. The related problem
of maximum bipartite matching is well explored in the so-called “semi-streaming” model where
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the space of the algorithm is less than the input. In this model the algorithm is given potentially
multiple passes over the stream, so common approaches are to find an approximate matching and
then use augmenting paths to optimize it. More novel approaches phrase the maximum weight
matching problem as a linear program and use the “multiplicative weights update method” to
solve the problem [KN21] [Fei+05] [KN] [Ass23] [AG11]. With the amount of literature on the
maximum matching problem we find the lack of interest in the similar Stable Matching problem
intriguing and attempt to provide an equivalent level of characterization.

1.1 Previous Work on Stable Matchings in Streaming or Communication

In [KMV94], it was demonstrated that any deterministic “Y -arrival” online setting has a worst-
case Ω(n2) unstable pairs, using simple counterexamples. They also prove that the ”first-come-
first-serve” algorithm achieves O(n log n) unstable pairs on average, which is competitive across
randomized algorithms. Notably, their algorithm requires saving all of the preference lists seen so
far to make the decision for the next arrival, so is not low space.

A more recent work explores the problem in a 2-way communication setting and arrives at a Ω(n2)
randomized communication complexity lower bound for Stable Matchings as well as several different
relaxations to “approximate” stability. Specifically, the Ω(n2) lower bound applies to the following
problems;

1. Given an instance of the Stable Matching problem, find a stable matching.

2. Given an instance of the Stable Matching problem and a pair of participants, determine if
they can be paired in some/any stable matching.

3. Given an instance of the Stable Matching problem and 0 < ε ≤ 1, find any εn many pairs
that appear in some/any stable matching.

Each of these statements would be tight with the known upper bound of O(n2 log n) which
is just the complexity of sending over all the preferences of one side to the other and running
Gale-Shapley.

Theorem (Informally Theorem 3.1 from [Gon+18]). Finding a stable matching in the 2-way com-
munication model (even with randomness) requires Ω(n2) bits of communication.

Rouhgly, the proof proceeds by a reduction from UNIQUE-DISJOINTNESS (where Alice and
Bob are given subsets of [m] which are either disjoint or share a single common element and need
to determine which of those cases they’re in). In particular, Alice and Bob are both given subsets
of size [n(n− 1)], which we naturally view as subsets of [n]2 \ {(i, i) : i ∈ [n]}. The (i, j) element in
this matrix gives information about whether element i of each side prefers element j of the other
side for each j ̸= i, hence the size n− 1.

Given subsets A and B, we construct the preference lists for sets X and Y as follows:

For each xi, xi prefers all yj with (i, j) ∈ A in an arbitrary order over yi, and doesn’t rank any
of the other yj ’s. And, for each yj , yj prefers all xi with (i, j) ∈ B in an arbitrary order over xj ,
and doesn’t rank any of the other xi’s. As is typical, participants prefer being matched to anyone
on their preference list over being unmatched, and prefer being unmatched over being paired with
anyone not on their preference list.
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Then, one can verify the following claim: the matching (xi, yi) is the unique stable matching if
and only if . The proof of uniqueness is simple but appeals to some other known results specific to
stable matchings, but the proof that it is a stable matching is quite simple:

(xi, yi) is an unstable pair

⇐⇒ ∃j s.t.xi prefers yj over xi and yi prefers xj over yi

⇐⇒ (i, j) ∈ A ∧ (i, j) ∈ B.

From this, the result of (1) follows.
The proofs of statements (2) and (3) follow similar reductions.

Although not stated in the paper, it can be seen that this immediately implies an Ω(n2) lower
bound on the space complexity of any streaming algorithm solving Stable Matchings, even under
relaxations discussed in the paper. This can be done through the usual communication to streaming
reduction, in this case the problems being exactly the same.

In [Gon+18], they leave open the problem of whether one can find a stable matching with εn2

many unstable pairs in o(n2) bits of communication. There have been a few prior works providing
algorithms to do this sort of approximation with other objectives in mind. We first summarize
those results, and then our attempts to create an algorithm for this specific problem.

In [KP10], the authors work in the fully distributed model and define a notion of ε-approximately-
stable matchings as having few pairs of participants who rank each other a ε-fraction higher on each

other’s preference list than their current partners. They then prove an Ω(
√
n

logn) lower bound for the
number of communication rounds in any protocol that achieves this sort of approximation. Since
ε can be arbitrarily close to 1, this feels like a very weak notion of approximation, yet the authors
of [OR15] were still able to give a protocol for our notion of ε-stability that achieves O(log2(n))
communication complexity, demonstrating a separation in the difficulty of getting these different
sorts of approximations. The algorithm they propose to find these almost stable matchings, appro-
priately called ASM, in each round, individuals from side X propose to batches of individuals on
side Y , and side Y will temporarily accept proposals from their highest quantile, and a maximal
matching is computed on the accepted proposals to determine who is matched to whom. This
process is then repeated for enough iterations to guarantee convergence of a matching with ≤ εn2

unstable pairs.

A similar sort of approximation is seen in [Flo+09]. They proved that, if the maximum number of
individuals ranked by anyone is at most ∆, then Gale-Shapley can converge to a matching with at
most εn2 many unstable pairs in O(∆

2

ε ) many steps. The result uses a potential function argument
to show that a practically unmodified Gale-Shapley algorithm can almost converge very quickly,
even if it will take many more steps to converge to a stable matching.

Two works are able to show Ω(n2 log n) lower bounds in certain settings, which is optimal up to
constant factors since generally the entire instance takes Ω(n2 log n) space and Gale-Shapley can
be performed in this space bound as well. The first proves that any algorithm that must query
the input bit by bit must read Ω(n2 log n) bits to compute a stable matching [NH90]. The second
considers a distributed model where all 2n individuals hold their own preference list and must
send it to a server for a stable matching to be computed. It is shown that the server must receive
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Ω(n2 log n), but keyly uses a technique of forcing any “holes” in the instance to become necessary
to compute the stable matching, a paradigm we will mirror [CL10].

1.2 Our Results

1.2.1 Lower Bounds against Streaming Algorithms for Stable Matchings

We characterize Stable Matchings in the stream in what we believe to be the two most natural
models and prove a Ω(n2 log n) tight-up-to-constant-factors lower bound.

Theorem (Informally Theorem 3.4). Finding a stable matching in the stream even with randomness
requires Ω(n2 log n) space.

The proof is by reduction from a (to our knowledge) novel communication problem inspired
from Augmented INDEX. Roughly, we can think of Alice as having an encoding of n permutations
on [n] and Bob being interested in a single bit of Alice’s, which corresponds to a single bit in one
element of some permutation. However, the problem will be 1-way such that Bob cannot just ask
for the bit. Intuitively then, Alice has to send most of their input to succeed with, say, constant
probability. We can then reduce this problem to Stable Matchings as follows. Alice will interpret
their permutations as the initial segment of half of n people and give this to a stream, sending the
state over to Bob. Bob then finds out the desired bit by matching the person corresponding to
the bit to the individual in the corresponding spot in their preference list. To force this, Bob will
assign the other half of the people s.t. they “steal” the first few entries of the desired individual,
forcing the right matching as a result.

1.3 Roadmap

Section 2 will formally define the Stable Matching problem and some common variants as well
as some of the different streaming models we have identified for the problem, followed by a brief
introduction to the previous work, results, and relevant techniques. In Section 3, we will prove our
main result of a tight space lower bound against randomized Stable Matchings streaming algorithms.
In Section 4, we will look at a relaxation to the problem that might escape both previous and our
lower bounds and allow for sublinear streaming algorithms. Section 5 concludes with some future
directions and acknowledgements.

2 Preliminaries

2.1 Matching Definitions

Here we will define the canonical instance that we will refer to as “The Stable Matching Problem”.
The problem instance is of the form ⟨X,Y,CX , CY ⟩ where X and Y are disjoint sets (sometimes
referred to as vertices) with |X| = |Y | and CX and CY are collections of preference lists for X and
Y respectively, where every element x ∈ X and y ∈ Y has a list the collection which strictly ranks
all the elements of the other set. We will informally say that x ∈ X “prefers” y ∈ Y to y′ ∈ Y if y
comes before y′ in the preference list associated with x.

A matching in a stable matching instance is a bijection φ : X → Y . We say a pair (x, y) ∈ X×Y
is matched iff φ(x) = y. A pair (x, y) ∈ X×Y is unstable w.r.t. a matching φ if (x, y) is unmatched
and x prefers y to ϕ(x) and y prefers x to ϕ−1(y). A stable matching is a matching in which no
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pairs in X × Y are unstable.

The Stable Matching Problem can then be stated as follows.

Definition (The Stable Matching Problem). Given an instance ⟨X,Y,CX , CY ⟩ find and output a
stable matching.

The encoding used in the problem can vary, but we will often impose an arbitrary order on X
and Y and think of them as distinct copies of [n] and think of CX and CY as 2D arrays where
the first index determine which element’s list we are specifying and the second indicating the ith
most preferred element in their list. For example CX [i][j] would refer to the ith element of X’s jth
preferred element in Y .

In our algorithms, we will often try to approximate stable matchings, which we refer to as
ε-unstable matchings. While there is no agreed-upon definition of how to define stable matchings
in the literature, the definition that we will be using (unless otherwise specified) is as follows:

Definition. Given an instance of the stable matching problem and 0 ≤ ε ≤ 1, a ε-unstable matching
is a matching with at most ε|E| many unstable pairs, where |E| =

∑
x∈X |CX [x]|+

∑
y∈Y |CY [y]|.

In the above, we see |E| is the number of edges in the directed bipartite graph with an edge
(a, b) ⇐⇒ b is on a’s preference list. For example, in the full preference list model, |E| = n2 and
ε = 0 represents a stable matching.

There are also other commonly studied variants of the model basic question, including those
that allow preference lists with ties, matchings in which |X| ≠ |Y |, etc.,. In many cases, results for
these settings follow naturally from results in the setting presented above.

2.2 Streaming Models

The previous work outlined above lay out interesting streaming/online input settings that we will
describe below.

• Y -arrival Model. In the Y -arrival model of [KMV94], we we know the entire set X and
their preference lists ahead of time, and elements in Y arrive one by one along with their
entire preference list. The algorithm must match each y as it arrives.

While this and other previous models provide great inspiration, none of them were designed with
streaming in mind. As such, we will formally define the following new models that we think most
naturally capture the Stable Matching problem:

• Full Preference List Model. In this model the algorithm receives in the stream a preference
list of one individual at a time, much like with the Y vertices in the Y -arrival model. The
difference in this model is that the algorithm also receives X’s preference lists in the stream
instead of knowing them ahead of time. No ordering is imposed on which vertices arrive
when. The preference list is encoded as a list of n numbers, so takes Θ(n log n) space. Since
there are 2n vertices, the total input size is Θ(n2 log n).

• Partial Preference List Model. This model is a relaxation of the Full Preference List
Model above, where the algorithm receives individual entries to preference lists. Once again
ordering can be arbitrary, in particular you do not have to receive all of one preference list to
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start receiving another. The items in the stream can be encoded as (x, y, i), indicating that
the ith element on x’s preference list is y. Each tuple then takes Θ(log n) space and there
2n2 many, totalling to Θ(n2 log n) space again.

3 Lower Bounds for Streaming Stable Matchings

In this section we formally prove Theorem 3.4. We will do this in three stages. First we will show
an intuitive way to trick low space deterministic algorithms. We will then adapt this technique
in a more classic communication complexity reduction to achieve an Ω(n2) lower bound for the
randomized case. We will then show how to augment our communication problem to get a more
robust lower bound.

3.1 A First Attempt: An Ω(n2 log n) Lower Bound for Deterministic Algorithms

Theorem 3.1. Any deterministic streaming algorithm in the Partial Preference List Model solving
the Stable Matching Problem with error probability has space complexity ≥ Ω(n2 log n).

Proof:
We will construct Θ(n2 log n) Stable Matchings inputs for any fixed deterministic streaming algo-
rithm. By PHP, any streaming algorithm using o(n2 log n) space will necessarily end up in the
same state receiving some pair of these inputs. We will then append the rest of the stream in a
way that our original two inputs end up with different answers, yet they are indistinguishable to
the algorithm.

Formally, the set of inputs will just specify that for i ∈ [n/2] in X, we will assign the
first half of CX [i], the ith elements preference list, to be some permutation on [n/2]. It is a
simple counting argument that there are ((n/2)!)n/2, which by Stirling’s approximation requires
log2(((n/2)!)

n/2) = Ω(n2 log n) bits to encode.

Assume then that we get two inputs I1 and I2 that end up in the same state when fed to a fixed
algorithm in the stream. Since I1 ̸= I2, there must be some element that differs. Let x ∈ X be the
first element whose preference list is different between the two, and let j ∈ [n/2] be the first index
in CX [x] that differs between the two. The adversarial stream we will construct is as follows.

• For i ∈ [j − 1], CX [n/2 + i][1] = CX [x][i]

• For y ∈ Y, i ∈ [j − 1], CY [y][i] = n/2 + i

• For y ∈ Y , CY [y][j] = x

• Everything else can be chosen arbitrarily (but should be consistent with above)

To see that this works it is helpful to have the following claim.

Claim. Any Stable Matchings instance where one set has every element the same preference list
has a unique stable matching.

Proof :
WLOG let all of Y ’s preference lists be [n]. Clearly any matching where 1 is not matched to their
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most preferred partner is unstable, so match them. The stability of the rest of the matching then
depends on the stability of the subinstance where 1 is removed from the front of all Y ’s lists and
1’s partner is removed from all of X’s list. All of Y still has the same preference list however, so
we just proceed inductively.

Using this claim, it is not hard to see what the instance above is doing: we are just forcing x to
be matched to its jth preferred individual, but since this differs in I1 and I2 they won’t have the
same stable matching.

More formally, we can imagine running Gale-Shapley with members of X proposing in order
n/2+ 1, n/2+ 2, ..., n/2+ j − 1, x.... Clearly n/2+ i will take x’s ith preferred individual, so when
x proposes they will get their jth most preferred. No unmatchings happen as we are proposing
in the order Y most prefers. Since their is only one stable matching, this corresponds to it. We
conclude then that any deterministic algorithm cannot always be correct using o(n2 log n) space.

3.2 A Second Attempt: An Ω(n2) Lower Bound for Randomized Algorithms

In this section we attempt to extend to the previous result to cover randomized algorithms by using
mostly the same technique inside of a reduction from a communication problem. It was originally
suggested to us by Professor Woodruff to use INDEX. For some subtle technical reasons this doesn’t
work, but we can easily modify INDEX to make it work. Our modification creates the following
problem.

Definition (MULTI-PERM Problem). Let Alice have n permutations on [n], each encoded as S, a
list of n numbers in permutation order. Assume each number is encoded in log2 n bits. Assume
Bob has i ∈ [n2 log n] and wants to recover Si. Communication goes from Alice to Bob. A protocol
is said to solve the problem if for any S and i Bob can output Si with error probability ε over the
choices of Alice and Bob.

This problem is difficult to communicate.

Claim. Any protocol solving MULTI-PERM with error probability ε < 1
2 requires Ω(n2 log n) com-

munication.

We will defer the proof of the claim until Section 3.3. We are now ready to prove our first lower
bound for randomized streaming algorithms for Stable Matchings.

Theorem 3.2. Any randomized streaming algorithm in the Full Preference List Model solving the
Stable Matching Problem with error probability ε < 1

2 has space complexity ≥ Ω(n2).

Note that by the fact that the Full Preference List Model is a restriction to the Partial Prefer-
ence List Model, we immediately obtain the following corollary.

Corollary 3.3. The same space lower bounds hold for the Partial Preference List Model.

Proof of Theorem 3.2:
Assume that GS is a streaming algorithm in the Full Preference List Model that solves the stable
matching problem with error probability ε ≥ 0 and space complexity S(n). Let Alice hold an en-
coding of n

2 permutations of [n/2] as in the MULTI-PERM problem. Letting X = [n] and Y = [n],
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Alice simply sets the preference list CX for each i ∈ [n/2] as CX [i] = the ith encoded permutation
in s. Since this is the full preference setting, Alice also needs to set CX [i] for i ∈ [n] \ [n/2] simul-
taneously, which can just be arbitrary (but consistent with the encoded permutation). Alice now
runs GS on the above input (order can be arbitrary) up to ∆ times independently, and sends the
state of all ∆ runs as a list L.

Upon receiving this and an index i ∈ [n2 log n], Bob computes which which index it corresponds
to in the 2D array CX , identifying some x ∈ X and some jth index of the x’s preference list. It
suffices to recover CX [x][j] to determine si. Bob then runs the following algorithm.

def Algorithm 1(L, x, j) :

1. Set remainder CX preference lists arbitrarily

2. Set CY preference lists s.t. CY [y][1] = x then the rest arbitrarily

3. for i = 1 to j:

4. M = boostedGS(⟨CX , CY ⟩, L)
5. CX [n/2 + i][1] = x’s matched partner in M.

6. for y in Y:

7. CY [y][i] = n/2 + i

8. CY [y][i+ 1] = x

9. Do the above two as swaps (some element then gets moved down the list)

10. return x’s matched partner in M

Here “boostedGS” is a subroutine that takes the remaining lists in CX and CY and feeds them
(in any order) in stream into the ∆ runs given in L, then takes a majority over the outputted
matchings.

Claim. Algorithm 1 recovers si with probability 99
100 given ∆ = Ω(log n).

Proof:
We will delay all probabilistic analysis by first conditioning on the following set of events. Let Ei

be the event that “boostedGS” returns a stable matching on the ith iteration.

E = {[Ek | E<k] | k ∈ [j], where E<k is all Ei before k}

Essentially this is conditioning that every run of “boostedGS” is correct given the previous runs
have all been correct. It is not hard to argue correctness inductively from here: namely that x is
matched to its ith most preferred partner on iteration i.

On the first iteration, CY [y][1] = x for all y ∈ Y , so clearly in any stable matching outputted
x gets matched to CX [x][1], so x’s matched partner is its most preferred match. Now inductively
assume that on iteration k, x was matched with its ith most preferred partner on all previous
iterations. Necessarily then for all y ∈ Y , CY [y][i] = n/2 + i for all i ∈ [k − 1] and CY [y][k] = x.
Moreover, CX [n/2 + i][1] is x’s ith most preferred partner for i ∈ [k − 1]. So when we compute
the new stable matching, which is correct by our conditioning, the following happens. Clearly each
n/2 + i ∈ X, gets to choose their partner in order i ∈ [k − 1] as they are the most preferred by all
y ∈ Y . Each will choose the ith preferred partner of x, since they are their most preferred and have
not been taken previously. This leaves x to choose with all of its first k−1 preferred partners taken,
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but its k most preferred partner has not been taken, matching them. By this inductive argument
then, after the jth iteration x will be matched to CX [x][j], from which we can recover the goal bit
in s.

Now the success probability comes directly from computing the probability of event E.

Claim. Event E occurs with probability 99
100 given ∆ = Ω(log n).

Proof:
The proof is a simple boosting + Chernoff bound + union bound argument. Note that the event
[Ei | E<i] is just that a majority of independent runs of GS are correct on a specific instance.
Indeed, the instance is fixed before the algorithm even runs and thus the probability is just the
probability that the streaming algorithm is correct on this specific instance. So to compute the
probability E does not occur, it suffices to union bound over the algorithm being incorrect on j
separate instances. Letting E be the probability that “boostedGS” fails on a specific instance gives
us the followinng.

Pr[Ē] ≤
j∑

i∈1
E = j · E

To derive E , let Fi for i ∈ [∆] be an indicator for event that the ith run of GS on some arbitrary
input is incorrect and F =

∑∆
i=1 Fi. As the runs are independent, the variables are as well. By

linearity of expectation we easily get that E[F ] = ε∆. We are then interested in bounding the
probability that F ≥ ∆/2, as otherwise the algorithm is correct on over half the calls and we
deduce the majority matching is stable. There is a technicality: we want the stable matching to
be unique so it truly is majority but this is the case per Section 3.1. So we proceed via Hoeffding’s
inequality.

Pr[F ≥ ∆/2] = Pr[F ≥ E[F ] + (1/2− ε)∆] < e−2(1/2−ε)2∆

It follows that this is less than 1
100n when ∆ ≥ 1

2(1/2−ε)2
ln(100n), so j · E ≤ 1

100 as desired.

Claim. S(n) ≥ Ω(n2).

Proof:
The protocol above uses at most ∆ · S(n), which just accounts for the maximum space any sin-
gle run of the stream can do. The lower bound from MULTI-PERM is Ω(n2 log n), so necessarily
∆ · S(n) ≥ Ω(n2 log n). Since we can take ∆ = O(log n), we conclude S(n) ≥ Ω(n2).

The last claim to prove is that when ε = O(1/n), we can achieve S(n) ≥ Ω(n2 log n), which we can
accomplish by setting ∆ = O(1).

3.3 A Final Attempt: An Ω(n2 log n) Lower Bound for Randomized Algorithms

Doing a post-mortem of the proof above, the largest bottleneck to achieving Ω(n2 log n) was that
the number of runs of the streaming algorithm could be Ω(n). Indeed, it is believable that this
is not a weakness of the Chernoff bound: any algorithm with constant failure probability should
compound error across Ω(n) runs, so the obvious candidate for improvement is cutting down the
number of runs.
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Our game plan is as such then: how do we eliminate the number of runs needed in Algorithm 1.
The information we need is what the first so-and-so many elements of our identified preference list
is, which is what we recover in the runs. The solution then is to give us exactly this information:
along with a target index in this preference list we will give Bob all the previous elements of the list
as well. Our concern would be that this weakens the communication problem, but the key insight
we will show is that this does not help in the communication setting enough for us to lose hardness.

We now move to formally prove our main result, Theorem 3.4.

Theorem 3.4. Any randomized streaming algorithm in the Full Preference List Model solving the
Stable Matching Problem with error probability ε < 1

2 has space complexity ≥ Ω(n2 log n).

Proof:
The proof proceeds as described above. We will use the communication protocol from Section 3.2
but can skip to the last iteration instance, which is just the instance we constructed in Section 3.1,
by using direct access to the more preferred elements we need. This communication protocol can
be formalized as follows.

Definition (Augmented MULTI-PERM Problem). Let Alice have n permutations on [n], each en-
coded as S, a list of n numbers in permutation order. Assume each number is encoded in log2 n
bits. Let Bob have i ∈ [n2] which corresponds to some jth element in some x ∈ X’s preference list.
Let Bob additionally have access to the first j − 1 elements of x’s preference list. In this version,
Bob should have to output the entire right element S(x,j).

The theorem (as well as more or less the hardness of MULTI-PERM) follows directly from the
communication complexity of Augmented MULTI-PERM.

Theorem 3.5. Any protocol solving Augmented MULTI-PERM with error probability ε < 1
2 requires

Ω(n2 log n) communication.

Proof:
We proceed in the usual way, showing |M | ≥ H(M) ≥ I(S;M) (here H and I are entropy and
mutual information), so it suffices to show the mutual information of S and M must be high in any
protocol. Let S(i) be the ith permutation in S. By conditioning we have the following.

I(S;M) =
n∑

i=1

H(S(i) | S(<i))−H(S(i) | M,S(<i))

Conveniently, the permutations are independent of one another, so H(S(i) | S(<i)) = H(S(i)) =
log2(n!) = Θ(n log n). Since conditioning cannot raise entropy then, we can look at H(S(i) | M) as
an upper bound on the second term. From here we will break up each S(i) across its elements by
conditioning.

I(S;M) ≥ Ω(n2 log n)−
n∑

i=1

H(S(i) | M) = Ω(n2 log n)−
n∑

i=1

n∑
j=1

H(S(i,j) | M,S(i,<j))

Now we will use Fano’s Inequality on the Markov Chain S → M,S(i,<j) → S′, which says that
H(S(i,j) | M,S(i,<j)) ≤ H(ε) + ε log2(n − 1) since by assumption that the MULTI-PERM protocol
has Pr[S(i,j) ̸= S′(i,j)] ≤ ε. Here log2(n − 1) comes from the fact that S(i,j) can take on n values.
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From here we plug in and conclude I(S;M) ≥ Ω(n2 log n) as the constant suppressed above is close
to 1 which is greater than ε.

4 Sublinear Streams for Approximate Stable Matchings

In light of Theorem 3.5, we now have a strong guarantee against streaming algorithms that exactly
solve Stable Matchings, so the natural next step is to relax the problem. For this, we will use the
notion of ε-unstable matchings.

Conjecture 4.1. For any c ∈ [0, 1], there is a randomized streaming algorithm in the Full Pref-
erence List Model that finds a matching with at most O(n1+2c log n) unstable pairs with space
complexity O(n2−c log n).

We consider and analyze the following algorithm.

def Algorithm 2(⟨CX , CY ⟩) :
1. SX = Sample T individuals from X

2. SY = Sample T individuals from Y

3. In stream, save only SX and SY ’s preference lists

4. for every matching M of X and Y

5. count = 0

6. for (x, y) in SX × SY :

7. if (x, y) is unstable w.r.t.M:

8. count = count+ 1

9. if count ≤ n log n then return M

10. return whatever

Claim 1. Algorithm 2 uses O(Tn log n) space.

Claim 2. Algorithm 2 returns a matching with O(b) unstable pairs with error probability ε given
T 2b ≥ Ω(n3 log n).

The two claims would be sufficient to prove Conjecture 4.1 by letting T = Θ(n1−c) and
b = Θ(n1+2c log n). However, we will show that our analysis for Claim 2 falls through, but we
include it as the sketch does not seem unable to be recovered.

Proof of Claim 1:
The main space contributor is storing the 2T preference lists for SX and SY , which eats up 2Tn log n
space plus whatever overhead. To iterate through matchings we can simply store each matching as
a list of n numbers, taking O(n log n) space. Every other counter can be stored in roughly O(log n).

Sketch of Claim 2:
At a high-level, we will try to show that any matching with a large number of unstable pairs is
likely to be well-sampled. So likely in fact, that we will be able to union bound over all matchings.
This establishes that any largely unstable matching will not appear stable in our sample, so we can

12



then just output the first decent matching according to our sample.

More formally, fix a matching M which has ≥ b unstable pairs w.r.t. our instance. It is worth
noting that determining exactly how many unstable pairs a given matching has seems difficult to
do in our space bound, but this is unnecessary for the following argument. It is not hard to see
that each unstable pair is included in the count with probability (T/n)2, just the probability that
each of its individuals is sampled. In this case, the algorithm will easily see that both are higher
on the other’s list than its proposed partner in M . From here, if we set T 2b ≥ Ω(n3 log n) the
expected number of unstable pairs that carry into our sample is ≥ Ω(n log n). If we could show
sufficient concentration, that is ≤ 1

nn probability of dropping below n log n, then we could union
bound across all matchings and conclude that M will not be output.

The problem that arises is that whether or not an unstable pair appears in our sample is very
much dependent on other unstable pairs appearing, so using a strong concentration bound like the
Chernoff bound does not seem possible.

To rid ourselves of this dependence, one could try to sample only information about each pair
separately like below. Note this algorithm assumes the Partial Preference List Model.

def Algorithm 3(⟨CX , CY ⟩) :
1. S = Sample each pair (x, y) w.p. p

2. In stream, save only info between x and y’s in S

3. for every matching M of X and Y

4. count = 0

5. for (x, y) in S:

6. if (x, y) is unstable w.r.t.M:

7. count = count+ 1

8. if count ≤ n log n then return M

9. return whatever

This kind of sampling indeed avoids dependence between the events of interest, but it runs into
the issue that deciding whether (x, y) is unstable with respect to M is difficult without having all
of x’s and y’s preference lists, and keeping the entire preference list for any element in any pair
in S is not feasible as in general S contains every element unless p is too small to get a good sample.

Indeed, our final attempt will not try to improve on our sampling method, but instead will
choose our matching more cleverly so that the event we need to avoid is much weaker.
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def Algorithm 4(⟨CX , CY ⟩) :
1. SX = Sample T individuals from X

2. SY = Sample T individuals from Y

3. In stream, save only SX and SY ’s preference lists

4. for every matching M of X and Y

5. count = 0

6. for (x, y) in SX × SY :

7. if (x, y) is unstable w.r.t.M:

8. count = count+ 1

9. if count = 0 then return M

10. return whatever

Claim 3. Algorithm 4 uses O(Tn log n) space.

Proof: Follows from Claim 1 for Algorithm 2.

Claim 4. Algorithm 4 returns a matching with O(b) unstable pairs with error probability ε given
T 2b ≥ Ω(n3 log n).

Proof:
As above we will attempt to prove the contrapositive, that any M with ≥ b unstable pairs will not
be output with high probability.

The key insight here is something that was swept under the rug in the first attempt - the com-
pleteness of the algorithm. It is a priori not apparent that this algorithm terminates in the loop:
why should there be a matching with count = 0? The reason is quite simply the Gale-Shapley
algorithm. Gale-Shapley guarantees on the induced subinstance from SX and SY there is a stable
matching. Individuals outside the subinstance can be matched arbitrarily but importantly none
of the sampled individuals can be unstable w.r.t. such a matching, as this would contradict the
stability of the subinstance.

The contrapositive becomes easier: we just need to show that for any M with ≥ b unstable
pairs, we cannot have count = 0 with high probability. From our analysis above, we recall that
any unstable pair being sampled will increase the count, so any matching that slips past must have
that SX × SY avoids all unstable pairs.

This pathway suggests the following approach: show that any matching with “many” unstable
pairs cannot have many subsets that it is stable on (where the stability is w.r.t. the subinstance
induced). Namely, in the T = n1−c regime, to get the 1/nn failure probability we wanted above,
we need the number to be something like poly(n).

5 Discussion

Here we leave a couple unresolved questions related to our results.
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• In our exploration we improved the previous Ω(n2) lower bound on randomized Stable Match-
ings streaming to Ω(n2 log n). The previous lower bound also held in some relaxed settings
where the outputted must be approximately stable, not unrelated to the notion explored
above. A natural question might be if algorithms cannot be found in these settings, does the
Ω(n2 log n) bound extend. It is not immediately obvious how to extend our technique, which
heavily relies on the exact pair we care about being matched correctly.

• Our biggest open problem is Conjecture 4.1 above, where we have already explored many
approaches and left some open-ended. It is worth noting that this result mirrors the results
of previous work quite well. The most interesting regimes are when b = Θ(n log n) and
T = Θ(n) and when b = Θ(n2) and T = Θ(

√
n log n). The former says roughly that by

sampling a constant fraction of our input, we would be able to find a matching with roughly
n log n unstable pairs, improving greatly on the trivial n2. The second would say that we can
find a matching with some constant factor better than the trivial n2 but with only n3/2 log n
space, which is truly sublinear. The last interesting piece is that our approach inherently
seems to greatly fail to get a Θ(n) unstable pairs matching, which more or less mimics the
previous work of [Gon+18] that a related regime is hard to communicate.
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